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We investigate the effect of quenched disorder with long-range correlations on two growth phenome-
na, namely, diffusion-limited aggregation (DLA) and the dielectric-breakdown model (DBM). The
motivation for this study arises from experimental observations indicating that the permeability and hy-
draulic conductivity of heterogeneous rock masses seem to follow a fractional Brownian motion (FBM),
a distribution that induces correlations that are essentially of infinite extent. A two-dimensional FBM is
used to generate the conductivities of the medium in which DLA and DBM clusters are grown. A cutoff
is also introduced into FBM that allows one to tune the length scale over which the conductivities are
correlated. The results indicate that long-range correlations play a dominant role in the growth of the
clusters, and the effect of all other factors, which could be important if there were no long-range correla-
tions, is negligible. The results are completely different from those of disordered but uncorrelated media,
and also reveal large differences between the DBM and DLA models. Thus any realistic modeling of
transport in heterogeneous rocks must take into account the effect of such correlations.

PACS number(s): 68.70.+w, 47.55.Mh

I. INTRODUCTION

In recent years fractal and nonequilibrium growth pro-
cesses have attracted much attention [1-4] due to their
relevance to a wide variety of phenomena such as coagu-
lation of colloidal particles, displacement of one fluid by
another, growth of tumors, mechanical and electrical
breakdown of disordered materials, electrochemical
deposition, and turbulence. A wide variety of models for
describing such phenomena have been proposed and
‘studied by analytical and numerical methods, and several
experimental studies have confirmed their validity.

Most of the structures that are generated by growth
processes are disordered, and much of the recent ad-
vances in understanding such phenomena are due to the
fact that these disordered structures exhibit scaling in
both time and space. As a result, most of the recent stud-
ies have focused on investigating the scaling properties of
such structures and the associated critical exponents.
However, these studies are based on the assumption that
the disorder in the structure of the systems formed by
growth processes arises from the stochastic noise having
short-range correlations in space and/or time. In prac-
tice, there are many systems in which the stochastic noise
or disorder is quenched into the system with long-range
correlations between various regions of the system. For
example, natural rock masses may be characterized
[5-7] by spatially varying permeabilities or hydraulic
conductivities with long-range correlations (see below).
As a result, flow and transport in natural rocks can be
greatly influenced by such correlations. Although there
have been several recent studies of the effect of long-
range correlations on growth phenomena [8-12], they
have been restricted to deposition processes in which it is
only the surface of the system that exhibits interesting
and nontrivial behavior, and the bulk of the system is
compact. Moreover, these studied were restricted either
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to the case of one-dimensional spatial correlations, or to
correlations in time only.

The purpose of this paper is to undertake a systematic
study of the effect of quenched disorder with long-range
correlations on two typical growth processes, namely, the
diffusion-limited aggregation (DLA) model [13] and the
dielectric-breakdown model (DBM) [14] in a two-
dimensional system. The type of quenched disorder that
we use is motivated by the statistical distributions that
have been shown to describe the hydraulic conductivities
of macroscopically heterogeneous rocks [5-7]. More-
over, changing a single parameter in the distribution al-
lows us to obtain a variety of interesting growth patterns.

The plan of this paper is as follows. In the next section
we describe the disorder distribution that we use and its
propetrties, the motivation for using such a distribution,
and how it is used in the models. Next we describe
briefly the two models that we study in this paper. We
then present and discuss the results.

II. GENERATION OF QUENCHED DISORDER
WITH LONG-RANGE CORRELATIONS

There are many different methods for generating
quenched disorder. However, generation of disorder with
long-range correlations is not straightforward. One of
the most useful models for doing this is the fractional
Brownian motion (FBM) due to Mandelbrot and Van

Ness [15]. Consider a stationary stochastic process

By (x) with the following mean and variance:
(BH(X)_BH(X())):O, (1)
([By(x)—Bg(x0)1*) ~|x —x,|**, (2)

where x and x are two arbitrary points, and H is called
the Hurst exponent [15]. The usual Brownian motion or
random walk corresponds to H=21. A remarkable prop-
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erty of this function is that it generates correlations

whose extent is essentially infinite. For example, if a

correlation function is defined by [16,17]
(—=By(—x)By(x))

Clx)= , 3
x (By(x)?) )

then one finds that C(x)=22H~1—1 j.e., the correlation
function is independent of x. Moreover, the type of
correlations can be tuned by varying H. If H > 3> then
FBM displays persistence, i.e., a trend (a high or low
value of the variable) at x is likely to be followed by a
similar trend at x +Ax. On the other hand, if H <%,
then FBM generates antipersistence, i.e., a trend at x is
not likely to be followed by a similar trend at x + Ax.
For H=1, there are no correlations of the type defined
above, and the overall shape of FBM traces is similar to
ordinary random walks. Thus, varying H allows us to
generate highly correlated or anticorrelated quenched
disorder. This one-dimensional distribution can be easily
extended to higher dimensions. One now writes

([BH(r)_BH(ro)]2>~lr*r0l2H, (4)

where r=(x,y,z), and r,=(x,y¢,2¢)-

A convenient way of representing a distribution func-
tion is through its spectral density S(f), which is the
Fourier transform of its variance. For FBM in d dimen-
sions it can be shown [16] that

S(f)~ d H+d/2 » (5)
> 7
i=1
where f=(f,...,f;). We may also introduce a cutoff
a such that
S(f)~ 2 L H+d/? - (6)
a-&-Ef,-2
i=1

Introducing this cutoff allows us to control the length
scale over which the heterogeneities are correlated (or an-
ticorrelated). Thus, for length scales I <1/a!/? they
preserve their correlations (anticorrelations), but for
I>1/a'”? they become random and uncorrelated. The
spectral density representation of the distribution also
provides a convenient method for generating a sequence
of numbers that obey a FBM. One first generates random
numbers, uniformly distributed in (0,1), and assigns them
to the sites or bonds of a d-dimensional lattice. One then
calculates the Fourier transform of the d-dimensional ar-
ray of the random numbers (knowing the distance be-
tween any two numbers on the lattice). The Fourier
transformed numbers are then multiplied by a factor
which is the square root of the right-hand side of Eq. (5)
or (6). The resulting numbers are then inverse Fourier
transformed back into the real space. The numbers so
obtained follow a FBM. More details about the method
are given elsewhere [17]. To avoid the problems associat-
ed with periodicity that arises from Fourier transforming

1273

of the numbers assigned to the lattice sites or bonds, one
can generate the numbers for a large lattice, and use only
a portion of it. Figure 1 presents the numbers generated
by a two-dimensional FBM with H =0.8 and three values
of the cutoff a. In order to generate these numbers a
2000X 2000 square lattice was used, and the numbers
shown correspond to a 1000X 1000 portion of the lattice.
In all cases the same initial sequence of random numbers
was used for Fourier transforming, and thus the
difference between the various cases is only due to the na-
ture of FBM. Note that since H=0.8 > 0.5, the numbers
are positively correlated, and therefore for @ =0 the
curve is relatively smooth. However, as can be seen, the
cutoff generates randomness at large scales, although at
smaller scales the correlations are preserved [Figs. 1(b)
and 1(c)]. For larger values of the cutoff [Fig. 1(c)] the
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FIG. 1. The distribution of the numbers generated by a two-
dimensional FBM with H=0.8 and various values of the cutoff
a. (a) a=0 corresponds to numbers that are infinitely correlat-
ed. In (b) and (c) the numbers are not correlated for distances
1> 1/a'”?. Distances are measured in units of lattice bonds.
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FIG. 2. The distribution of the numbers generated by a two-
dimensional FBM with H=0.8 and a=10°% In this case the
numbers are correlated only for / <1073,

distribution seems to be different from that shown in Fig.
1(a), because for such values only small-scale structure of
the distribution without the cutoff is preserved. More-
over, for very large values of the cutoff (Fig. 2) there is a
transition from the correlated (or anticorrelated if
H <0.5) structures to Gaussian or white noise, corre-
sponding to H=—]. White noise so obtained is the
derivative of the trace of Brownian motion (H =%) and,
therefore, corresponds to H=—1. Figure 3 shows the
results for H=0.2, i.e., the case in which the numbers are
anticorrelated. The same initial sequence of random
numbers as that of Figs. 1 and 2 was used for Fourier
transforming and generating the results. For H <O0.5,
one has antipersistent patterns, namely, a large number is
likely to be followed by a small one and vice versa and, as
a result, the distribution is very rough, which Fig. 3(a)
demonstrates nicely. Increasing the cutoff @ only in-
creases the roughness, and thus the distribution will look
even more random [Figs. 3(b) and 3(c)].

In this paper, we use such two-dimensional FBMs for
generating quenched disorder. The motivation for doing
this is that extensive experimental studies of macroscopi-
cally heterogeneous reservoir rocks [5-7] have shown
that their hydraulic conductivity follows a FBM with
H=~0.7-0.8. Moreover, the analysis of large-scale
heterogeneities of rocks, e.g., fractures and faults, have
indicated [18,19] that the fracture and fault patterns are
closely related to a FBM. Therefore, we study the effect
of quenched and correlated disorder represented by a
FBM on growth phenomena governed by the DBM and
DLA models. Since it has already been established that
[7,20] the DBM and DLA model can reproduce certain
features of displacement of one fluid by another in a
porous medium, our study is directly relevant to trans-
port and displacement processes in large-scale and ma-
croscopically heterogeneous rocks. Thus, we assign the hy-
draulic conductivities of a porous medium from a FBM,
and study how the growth patterns evolve in a medium
with quenched and correlated disorder.

III. DLA AND DBM IN A MEDIUM WITH
QUENCHED AND CORRELATED DISORDER

We have investigated the DBM and DLA model in a
macroscopically heterogeneous porous medium
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represented by a square network. Each bond of the net-
work is assumed to represent a portion of the medium
over which it is homogeneous. However, since we are in-
terested in macroscopically heterogeneous porous media,
the hydraulic conductivity of the bonds must vary spa-
tially with long-range correlation. Therefore, we use a
two-dimensional FBM to generate the conductivities.
Both DLA and the DBM can be simulated by random-
walk methods, or by directly solving the Laplace equa-
tion on the network; we have used the latter method.
Thus, in both models one solves the discrete Laplace
equation on a lattice with quenched disorder,

—(A¢)=3(d;—¢;)o; , o)
J

where ¢, is the potential at site i of the lattice, o;; is the
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FIG. 3. The distribution of the numbers generated by a two-
dimensional FBM with H=0.2 and various values of the cutoff
a. In (a) the numbers are anticorrelated at all scales, whereas in
(b) and (c) they are anticorrelated only for I > 1/a'/%
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conductivity of the bond between i and j, and the sum is
over all nearest neighbors j of i. We assume that the con-
ductivities are distributed according to FBM, and thus
are highly correlated, or anticorrelated, depending on the
value of H. In both models one boundary condition is
that far from the growing cluster, ¢=1. The difference
between the two models is in the boundary condition at
the front (interface) separating the growing cluster from
the empty sites of the network. While in the DBM ¢=0
on the interface sites of the cluster, in the DLA model
¢=0 on the empty sites adjacent to the interface. It is
also well known that the shape of the clusters in both
models is very sensitive to noise and fluctuations that are
the result of the random growth of the clusters. There-
fore, in order to eliminate the effect of this randomness
and study only the effect of quenched disorder represent-
ed by the distribution of the conductivities, we used DLA
and the DBM in the limit of infinite noise reduction
[21-23]. In this limit, one assigns counters c¢; to the
bonds or sites of the lattice which take on zero values at
the beginning of the simulation. At each stage of the
simulation the values of the counters are updated accord-
ing to

ci—c;tave, (8)

where a is the minimum of (1—c¢;)/V¢, and V¢ is poten-
tial gradient at the counter’s site or bond. Thus, the site
or bond for which the value of the counter reaches unity
is added to the growing cluster, the boundary condition
at, or adjacent to, the interface is modified, the Laplace
equation is solved again, and so on. Moukarzel [24] and
Batchelor and Henry [25] studied DLA and the DBM in
the limit of zero noise. However, no quenched disorder
of the type that is of interest to us was present in their
simulations.

In the DLA model we put the counters on the bonds of
the lattice, whereas in the DBM the counters are associ-
ated with the sites. The idea is that simulation of DLA
or the DBM in a disordered lattice may correspond to a
miscible or an immiscible displacement process in a
porous medium, where the bonds and sites of the lattice
represent, respectively, the pore throats and pore bodies
of the medium. In the DLA case, it is assumed that the
pore throats control the displacement process, and the
pore bodies are neglected, whereas it is the opposite case
in the DBM case. Such assumptions about the role of
pore bodies or pore throats have been used by many au-
thors in the past, and our work allows us to check their
effect on the growing patterns in the presence of
quenched disorder with long-range disorder. Moukarzel
[24] has already investigated four distinct cases, namely,
when the counters are put on the bonds or sites of the lat-
tice in both the DBM and DLA model. However,
Moukarzel was interested in the effect of the random to-
pology of a lattice on the growth patterns, and thus inves-
tigated these models on a variety of topologically disor-
dered lattices; the effect of quenched disorder on the
values of conductivities with correlations was not studied.

We first generated the random conductivities accord-
ing to the FBM described above and assigned them to the
bonds of the lattice. In all cases, we used 2000 X 2000 lat-
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tices, and then used a 200 X200 portion of them for grow-
ing the clusters. For all values of H the same initial se-
quence of random numbers was used for the initial
Fourier transforming and generating the conductivities,
and therefore the difference between the distribution of
the conductivities for various values of H is due to the na-
ture of FBM, and has nothing to do with the inherent
noise in the initial frequency of the random numbers.
The Laplace equation was solved by the conjugate-
gradient method, using a fully vectorized algorithm
developed by Moukarzel [24]. All computations were
carried out on a Cray-YMP supercomputer. No attempt
was made to determine the fractal properties of the clus-
ters, if any, since we are only interested in the effect of
quenched disorder with long-range correlation on the
shape of the clusters. Moreover, the computations, in-
cluding the generation of the conductivities according to
FBM, are very intensive and time consuming, and gen-
eration of very large clusters for estimating their fractal
properties requires very large amounts of CPU time.

IV. RESULTS AND DISCUSSION

Figure 4 presents the results of our simulations for the
DBM for various values of H. The case H= —0.5 corre-
sponds to white noise (completely random numbers).
Even in this case, thick branches form and, moreover, a
lot of tip splitting occurs which is undoubtedly due to the
random but uncorrelated distribution of the conductivi-
ties. As H is increased to zero, the branches become
thicker and tip splitting appears to reduce. For
0 < H <0.5 the values of the conductivities are anticorre-
lated, and therefore it is likely that a bond with a large
conductivity is followed by a low-conductivity bond and
vice versa. This implies that the path of the growing
cluster is still very heterogeneous, and therefore tip split-
ting may still be expected to occur and, indeed, the pat-
terns for H =0 and H =0.2 confirm this. For H=0.5
the trace of FBM is that of a random walk, but there are
correlations in the system, and for H > 0.5 the conduc-
tivities become positively correlated, and thus in some
sense the medium is less disordered and we may expect
tip splitting to decrease. Indeed, as Fig. 4 indicates, with
increasing H the number of branches and the amount of

| =02

*

=05 . =0

L

T H=05 | “H=038

FIG. 4. Growth patterns as a function of H obtained with the
DBM.
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tip splitting decrease significantly.

In Fig. 5 we show the effect of the cutoff on the pat-
terns grown with the DBM for H=0.8. As the cutoff in-
creases, the length scale over which the conductivities are
correlated decreases, and therefore for a fixed H the
amount of disorder should increase (see Figs. 1 and 2) at
large scales. Thus, we expect the growing cluster to take
on an increasingly random shape, and Fig. 5 confirms this
trend. Figure 6 shows the effect of the cutoff for H=0.2,
i.e., the anticorrelated case. Since H <0.5 gives rise to a
highly disordered system with anticorrelations (Fig. 3),
and because the cutoff decreases the size of the region in
which the conductivities are correlated or anticorrelated,
compared with Fig. 5, we expect to see more disordered
patterns, and Fig. 6 confirms this. However, since for
very large values of the cutoff a, and regardless of the
value of H, FBM approaches a white noise, the shapes of
the clusters for both H =0.8 and 0.2 should be essentially
the same for @ = 10° and be similar to the case H=—0.5,
and Figs. 5 and 6 also confirm this expectation.

Figure 7 presents the results for the DLA model and
shows patterns which are completely different from those
for the DBM. Thick branches are not formed with the
DLA model, because they are due to the inherent surface
tension effect that is present in the DBM but not in DLA.
Surface tension acts as a stabilizing agent, and thus the
clusters tend to be compact. Such an effect is absent in
DLA, and therefore one finds a more open and random
structure in DLA clusters. As H increases, the DLA
clusters take on an increasingly dendritic (ordered) struc-
ture. For H > 0.5 the conductivities are positively corre-
lated, and therefore the bond-to-bond variations of the
conductivities are not large, and hence the shape of the
cluster is somewhat similar to that in an ordered porous
medium without any correlations. This expectation is
confirmed by experiments in which a fluid displaced a
much more viscous and miscible fluid in an ordered
porous medium [26]. However, Fig. 7 (and 4) also tells us
that in modeling transport and displacement in porous
media, it is not enough to include only pore-level hetero-
geneities without any correlations, because then we
would only obtain random and very open (fractal-like)
structures for DLA and DBM clusters, whereas long-

=03 I T

H=08 H=08
a= 10000 2= 1000000

FIG. 5. The effect of the cutoff @ on the growth patterns ob-
tained with the DBM. H > 0.5 indicates that the conductivities
are correlated.
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FIG. 6. The effect of the cutoff a on the growth patterns ob-
tained with the DBM. H <0.5 indicates that the conductivities
are anticorrelated.

range correlations, which are presumably present in natu-
ral rocks, give rise to completely different patterns.
Thus, if we do not take into account the effect of long-
range correlations, our predictions for various properties
of transport and displacement processes in natural rocks
could be in error (see below). Note that in the limit
H=—1 the structure of the cluster is still random to
some extent, even though it is generated in the limit of
Zero noise.

In Fig. 8 the effect of the cutoff on the DLA clusters
for H=0.8 is shown. The effect of a is to some extent
similar to that for the DBM (Fig. 5), namely, as the cutoff
increases, the length scale over which the conductivities
are correlated decreases, and therefore beyond a certain
length scale ! defined above, the conductivities are essen-
tially random and uncorrelated. Therefore, at large
length scales, the clusters should take on random struc-
tures, and Fig. 8 confirms this. Figure 9 presents the
effect of the cutoff for H=0.2, and again the trends are
similar to those of the DBM.

To quantify the difference between the various pat-
terns, we calculated the sweep efficiency of each system,
i.e., the fraction of the sites of the original system occu-
pied by the aggregate. This quantity is routinely used in
the oil industry for characterizing the efficiency of a dis-

H=05 T H-o02]

FIG. 7. Growth patterns as a function of H obtained with the
DLA model.
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FIG. 8. The effect of the cutoff a on the growth patterns ob-
tained with the DLA model, if the conductivities are correlated.

placement process. Figure 10 shows the dependence on
H of the sweep efficiency for both the DBM and DLA
model with @ =0. It may seem surprising that for the
DLA model H has virtually no effect on the sweep
efficiency. However, Figs. 7-9 reveal the DLA patterns
do not change much as H is varied. In contrast, the
sweep efficiency in the DBM increases by a factor of
about 2 as H is increased from —O0.5 to 0.8. Although
this increase may also seem unexpected, Figs. 4—6 tell us
that as H increases the branches of the aggregates be-
come thicker, thereby increasing the sweep efficiency of
the process. Another notable feature of Fig. 10 is the
large difference between the sweep efficiency of the two
models. In the literature [1], the DBM and DLA model
have been considered as essentially equivalent. However,
Fig. 10 tells us that, e.g., at H=0.8 (which is the value
that seems to describe the distribution of permeability of
heterogeneous rocks) the sweep efficiency of the DBM is
about 7 times larger than that of the DLA model. Thus,
one model cannot be used for simulating the other. A
glance at the literature indicates that the DBM has been
used frequently for modeling miscible displacement pro-
cesses, because of the belief that it is essentially
equivalent to the DLA model. We remind the reader
that the DLA model corresponds to a miscible displace-

=02 =02 |
asn A= |

H=02
= 1000000

FIG. 9. The effect of the cutoff a on the growth patterns ob-
tained with the DLA model, if the conductivities are anticorre-
lated.
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FIG. 10. The effect of H, the parameter of the FBM, on the
sweep efficiency of the DBM and DLA model. The cutoff is
a=0.

ment in which an inviscid fluid displaces a viscous one
[20].

Figure 11 presents the effect of the cutoff @ on the
sweep efficiency of the two models. As in Fig. 10, the
cutoff has virtually no effect on the sweep efficiency of the
DLA model, whereas it has a rather large effect on the
efficiency of the DBM. Moreover, as a increases, i.e., as
the length scale / =1/a'/2, over which the conductivities
and permeabilities are correlated (or anticorrelated), de-
creases the difference between the seep efficiencies of the
DBM with H=0.2 and H =0.8 also decreases. This may
be expected, since for large values of the cutoff a, there is
only a small region in which the permeabilities are corre-
lated (or anticorrelated), and for length scales > >/ the
permeabilities become independent of H and are distri-
buted randomly.

It might seem that quantifying the difference between
the DBM and DLA model with quenched disorder and
long-range correlations may also be possible through the
differences between their fractal properties. However, as
our results demonstrate, the interior of all the DBM ag-
gregates that are obtained here is compact which, as dis-
cussed above, is due to the surface tension effects. Thus,
only the surface of the aggregates might have fractal
properties, if at all. On the other hand, the DLA pat-
terns obtained here are more or less dendritic with small-
scale randomness. They do not have any thick branches,

0.5 - —
DBM: H=0.2 ~—
0.45 H=08 -+
DLA: H=02 -
04 | H=08 x
035F
) —
g 03[ T
g e
i 0.25 -
Q
3 02}
g .
(2]
0.15 | 1
R S— — S
0.05 1
0 .
0 1 2 3 4 5 6

cutoff log, (a)

FIG. 11. The effect of the cutoff a on the sweep efficiency of
the DBM and DLA model.
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because surface tension effects are absent in the DLA
model. Such patterns tend to be self-affine rather than
self-similar, and their properties have been extensively
studied [1]. Thus, we believe that the sweep efficiency is
the most appropriate quantity for characterizing the
difference between the DLA and the DBM aggregates ob-
tained here.

V. SUMMARY

We investigated the effect of quenched disorder with
long-range correlations, which are expected to be present
in many systems of practical interest (especially in natu-
ral rock masses), on two growth phenomena, namely,
DLA and the DBM. Even though our simulations were
done in the limit of zero noise, i.e., the clusters were not
grown stochastically, the results, especially those for the
DBM, are quite different from those in the absence of
long-range correlations. They indicate the dominant role
of long-range correlations, and thus demonstrate that any
realistic modeling of transport in rock must take into ac-
count the effect of such correlations. Elsewhere we have
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investigated [27] the effect of such long-range correla-
tions on miscible displacements and viscous fingering in
heterogeneous rocks. We have shown that, contrary to
the popular belief, the viscosity contrast between the two
fluids does not play any significant role, and the perfor-
mance of the displacements is solely controlled by the
heterogeneities with long-range correlations.
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